201 research outputs found

    Sensory Electrical Stimulation Improves Foot Placement during Targeted Stepping Post-Stroke

    Get PDF
    Proper foot placement is vital for maintaining balance during walking, requiring the integration of multiple sensory signals with motor commands. Disruption of brain structures post-stroke likely alters the processing of sensory information by motor centers, interfering with precision control of foot placement and walking function for stroke survivors. In this study, we examined whether somatosensory stimulation, which improves functional movements of the paretic hand, could be used to improve foot placement of the paretic limb. Foot placement was evaluated before, during, and after application of somatosensory electrical stimulation to the paretic foot during a targeted stepping task. Starting from standing, twelve chronic stroke participants initiated movement with the non-paretic limb and stepped to one of five target locations projected onto the floor with distances normalized to the paretic stride length. Targeting error and lower extremity kinematics were used to assess changes in foot placement and limb control due to somatosensory stimulation. Significant reductions in placement error in the medial–lateral direction (p = 0.008) were observed during the stimulation and post-stimulation blocks. Seven participants, presenting with a hip circumduction walking pattern, had reductions (p = 0.008) in the magnitude and duration of hip abduction during swing with somatosensory stimulation. Reductions in circumduction correlated with both functional and clinical measures, with larger improvements observed in participants with greater impairment. The results of this study suggest that somatosensory stimulation of the paretic foot applied during movement can improve the precision control of foot placement

    Movement Behavior of High-Heeled Walking: How Does the Nervous System Control the Ankle Joint during an Unstable Walking Condition?

    Get PDF
    The human locomotor system is flexible and enables humans to move without falling even under less than optimal conditions. Walking with high-heeled shoes constitutes an unstable condition and here we ask how the nervous system controls the ankle joint in this situation? We investigated the movement behavior of high-heeled and barefooted walking in eleven female subjects. The movement variability was quantified by calculation of approximate entropy (ApEn) in the ankle joint angle and the standard deviation (SD) of the stride time intervals. Electromyography (EMG) of the soleus (SO) and tibialis anterior (TA) muscles and the soleus Hoffmann (H-) reflex were measured at 4.0 km/h on a motor driven treadmill to reveal the underlying motor strategies in each walking condition. The ApEn of the ankle joint angle was significantly higher (p<0.01) during high-heeled (0.38±0.08) than during barefooted walking (0.28±0.07). During high-heeled walking, coactivation between the SO and TA muscles increased towards heel strike and the H-reflex was significantly increased in terminal swing by 40% (p<0.01). These observations show that high-heeled walking is characterized by a more complex and less predictable pattern than barefooted walking. Increased coactivation about the ankle joint together with increased excitability of the SO H-reflex in terminal swing phase indicates that the motor strategy was changed during high-heeled walking. Although, the participants were young, healthy and accustomed to high-heeled walking the results demonstrate that that walking on high-heels needs to be controlled differently from barefooted walking. We suggest that the higher variability reflects an adjusted neural strategy of the nervous system to control the ankle joint during high-heeled walking

    A protocol for a randomised double-blind placebo-controlled feasibility study to determine whether the daily consumption of flavonoid-rich pure cocoa has the potential to reduce fatigue in people with relapsing and remitting multiple sclerosis (RRMS)

    Get PDF
    Background: Dietary interventions including consumption of flavonoids, plant compounds found in certain foods, may have the ability to improve fatigue. However, to date, no well-designed intervention studies assessing the role of flavonoid consumption for fatigue management in people with MS (pwMS) have been performed. The hypothesis is that the consumption of a flavonoid-rich pure cocoa beverage will reduce fatigue in pwMS. The aim of this study is to determine the feasibility and potential outcome of running a trial to evaluate this hypothesis. Methods: Using a randomised (1:1) double-blind placebo-controlled feasibility study, 40 men and women (20 in each trial arm) with a recent diagnosis (< 10 years) of relapsing and remitting MS (RRMS) and who are over 18 years of age will be recruited from neurology clinics and throughout the Thames Valley community. During a 6-week nutrition intervention period, participants will consume the cocoa beverage, high flavonoid or low flavonoid content, at breakfast daily. At baseline, demographic factors and disease-related factors will be assessed. Fatigue, activity and quality of life, in addition to other measures, will be taken at three visits (baseline, week 3 and week 6) in a university setting by a researcher blinded to group membership. Feasibility and fidelity will be assessed through recruitment and retention, adherence and a quantitative process evaluation at the end of the trial.We will describe demographic factors (age, gender, level of education) as well as disease-related factors (disease burden scores, length of time diagnosed with MS) and cognitive assessment, depression and quality of life and general physical activity in order to characterise participants and determine possible mediators to identify the processes by which the intervention may bring about change. Feasibility (recruitment, safety, feasibility of implementation of the intervention and evaluation, protocol adherence and data completion) and potential for benefit (estimates of effect size and variability) will be determined to inform future planned studies. Results will be presented using point estimates, 95% confidence intervals and p values. Primary statistical analysis will be on an intention-to-treat basis and will use the complete case data set. Discussion: We propose that a flavonoid-enriched cocoa beverage for the management of fatigue will be well received by participants. Further, if it is implemented early in the disease course of people diagnosed with RRMS, it will improve mobility and functioning by modifying fatigue. Trial registration: Registered with ISRCTN Registry. Trial registration No: ISRCTN69897291; Date April 2016

    Multiple viral infections in Agaricus bisporus - characterisation of 18 unique RNA viruses and 8 ORFans identified by deep sequencing

    Get PDF
    Thirty unique non-host RNAs were sequenced in the cultivated fungus, Agaricus bisporus, comprising 18 viruses each encoding an RdRp domain with an additional 8 ORFans (non-host RNAs with no similarity to known sequences). Two viruses were multipartite with component RNAs showing correlative abundances and common 3′ motifs. The viruses, all positive sense single-stranded, were classified into diverse orders/families. Multiple infections of Agaricus may represent a diverse, dynamic and interactive viral ecosystem with sequence variability ranging over 2 orders of magnitude and evidence of recombination, horizontal gene transfer and variable fragment numbers. Large numbers of viral RNAs were detected in multiple Agaricus samples; up to 24 in samples symptomatic for disease and 8–17 in asymptomatic samples, suggesting adaptive strategies for co-existence. The viral composition of growing cultures was dynamic, with evidence of gains and losses depending on the environment and included new hypothetical viruses when compared with the current transcriptome and EST databases. As the non-cellular transmission of mycoviruses is rare, the founding infections may be ancient, preserved in wild Agaricus populations, which act as reservoirs for subsequent cell-to-cell infection when host populations are expanded massively through fungiculture

    Differences in gait patterns, pain, function and quality of life between males and females with knee osteoarthritis: a clinical trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this study was to gain a deeper understanding of the gender differences in knee osteoarthritis (OA) by evaluating the differences in gait spatio-temporal parameters and the differences in pain, quality of life and function between males and females suffering from knee OA.</p> <p>Methods</p> <p>49 males and 85 females suffering from bilateral medial compartment knee OA participated in this study. Each patient underwent a computerized gait test and completed the WOMAC questionnaire and the SF-36 health survey. Independent t-tests were performed to examine the differences between males and females in age, BMI, spatio-temporal parameters, the WOMAC questionnaire and the SF-36 health survey.</p> <p>Results</p> <p>Males and females had different gait patterns. Although males and females walked at the same walking speed, cadence and step length, they presented significant differences in the gait cycle phases. Males walked with a smaller stance and double limb support, and with a larger swing and single limb support compared to females. In addition, males walked with a greater toe out angle compared to females. While significant differences were not found in the WOMAC subscales, females consistently reported higher levels of pain and disability.</p> <p>Conclusion</p> <p>The spatio-temporal differences between genders may suggest underlying differences in the gait strategies adopted by males and females in order to reduce pain and cope with the loads acting on their affected joints, two key aspects of knee OA. These gender effects should therefore be taken into consideration when evaluating patients with knee OA.</p> <p>Trial Registration</p> <p>The study is registered in the NIH clinical trial registration, protocol No. NCT00599729.</p

    Abnormal joint torque patterns exhibited by chronic stroke subjects while walking with a prescribed physiological gait pattern

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is well documented that individuals with chronic stroke often exhibit considerable gait impairments that significantly impact their quality of life. While stroke subjects often walk asymmetrically, we sought to investigate whether prescribing near normal physiological gait patterns with the use of the Lokomat robotic gait-orthosis could help ameliorate asymmetries in gait, specifically, promote similar ankle, knee, and hip joint torques in both lower extremities. We hypothesized that hemiparetic stroke subjects would demonstrate significant differences in total joint torques in both the frontal and sagittal planes compared to non-disabled subjects despite walking under normal gait kinematic trajectories.</p> <p>Methods</p> <p>A motion analysis system was used to track the kinematic patterns of the pelvis and legs of 10 chronic hemiparetic stroke subjects and 5 age matched controls as they walked in the Lokomat. The subject's legs were attached to the Lokomat using instrumented shank and thigh cuffs while instrumented footlifters were applied to the impaired foot of stroke subjects to aid with foot clearance during swing. With minimal body-weight support, subjects walked at 2.5 km/hr on an instrumented treadmill capable of measuring ground reaction forces. Through a custom inverse dynamics model, the ankle, knee, and hip joint torques were calculated in both the frontal and sagittal planes. A single factor ANOVA was used to investigate differences in joint torques between control, unimpaired, and impaired legs at various points in the gait cycle.</p> <p>Results</p> <p>While the kinematic patterns of the stroke subjects were quite similar to those of the control subjects, the kinetic patterns were very different. During stance phase, the unimpaired limb of stroke subjects produced greater hip extension and knee flexion torques than the control group. At pre-swing, stroke subjects inappropriately extended their impaired knee, while during swing they tended to abduct their impaired leg, both being typical abnormal torque synergy patterns common to stroke gait.</p> <p>Conclusion</p> <p>Despite the Lokomat guiding stroke subjects through physiologically symmetric kinematic gait patterns, abnormal asymmetric joint torque patterns are still generated. These differences from the control group are characteristic of the hip hike and circumduction strategy employed by stroke subjects.</p
    • …
    corecore